
FastLane: An Agile Congestion Signaling Mechanism

for Improving Datacenter Performance

David Zats
Anand Padmanabha Iyer
Randy H. Katz
Ion Stoica
Amin Vahdat

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-113

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-113.html

May 20, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 MAY 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
FastLane: An Agile Congestion Signaling Mechanism for Improving
Datacenter Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The drive towards richer, more interactive content places increasingly stringent latency requirements on
datacenters. A critical component of meeting these is ensuring that the network responds agilely to
congestion, bounding network latency and improving high-percentile flow completion times. We propose a
new approach to rapidly detecting and responding to congestion. We introduce FastLane, a congestion
signaling mechanism that allows senders to respond more quickly. By delivering signals to senders with
high probability and low latency, FastLane allows them to retransmit packets sooner, avoiding
resource-wasting timeouts. It also enables senders to make more informed decisions by differentiating
between out-of-order delivery and packet loss. We demonstrate through simulation and implementation
that FastLane reduces high-percentile flow completion times by over 80% by effectively managing
congestion hot-spots. These benefits come at minimal cost?FastLane consumes no more than 2% of
bandwidth and 5% of buffers.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by NSF CISE Expeditions award CCF-
1139158 and DARPA XData Award FA8750-12-2-0331, and gifts from
Amazon Web Services, Google, SAP, Blue Goji, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, General Electric, Hortonworks, Huawei,
Intel, Microsoft, NetApp, Oracle, Quanta, Samsung, Splunk, VMware and
Yahoo!.

FastLane: An Agile Congestion Signaling Mechanism for
Improving Datacenter Performance

David Zats∓, Anand P. Iyer∓, Randy Katz∓, Ion Stoica∓, Amin Vahdat�
∓ University of California, Berkeley � Google / University of California, San Diego

ABSTRACT
The drive towards richer, more interactive content places in-
creasingly stringent latency requirements on datacenters. A
critical component of meeting these is ensuring that the net-
work responds agilely to congestion, bounding network la-
tency and improving high-percentile flow completion times.

We propose a new approach to rapidly detecting and re-
sponding to congestion. We introduce FastLane, a conges-
tion signaling mechanism that allows senders to respond more
quickly. By delivering signals to senders with high proba-
bility and low latency, FastLane allows them to retransmit
packets sooner, avoiding resource-wasting timeouts. It also
enables senders to make more informed decisions by dif-
ferentiating between out-of-order delivery and packet loss.
We demonstrate through simulation and implementation that
FastLane reduces high-percentile flow completion times by
over 80% by effectively managing congestion hot-spots. These
benefits come at minimal cost—FastLane consumes no more
than 2% of bandwidth and 5% of buffers.

1. INTRODUCTION
Many protocols have been proposed to improve worst-

case, high-percentile flow completion times in datacen-
ters [7,8,20,27,28,30]. These solutions focus on improving
completion times in the presence of challenging network
conditions such as congestion and packet loss. All of
them try to overcome the effects of a sender taking too
long to learn of and respond to congestion. Given this
commonality, can we address the root cause?

Traditionally, transport protocols employ host-based
solutions to detect and respond to congestion and loss.
Timeouts and the receipt of three duplicate acknowledge-
ments are used as indirect indicators of packet drops [15].
In response, transports typically retransmit packets and
reduce their overall sending rate (to mitigate congestion).
But, the indirect nature of these indicators inhibits trans-
ports from taking these and other actions rapidly.

Recent proposals have acknowledged the benefits of
having the network provide senders direct congestion
notifications. DCTCP [7] and D2TCP [27] have demon-
strated that ECN [14] can be effective in improving
high-percentile completion times. Switches set a flag

in passing packets during congestion. Once the packet
arrives at the receiver, it is echoed back to the sender.
Upon receiving the echoed packet, the sender learns
of the congestion in the network and throttles its rate.
While helpful, ECN takes a long time to propagate to
the receiver, to be echoed back, and to finally arrive at
the sender.

We argue that an agile congestion signaling mecha-
nism is the key to improving high-percentile performance
in datacenter environments. Our proposal is based on
the observation that the fastest possible signaling must
originate at the congested switch and flow directly back
to the source. To ensure low-latency and high probabil-
ity of delivery, we protect congestion signals, providing
them priority access to buffers and transmission. These
signals provide transport protocols a direct and rapid
indicator of congestion, allowing them to be more agile.

One potential concern with this scheme is whether the
congestion signals sent by switches will exacerbate the
congestion in the network on the reverse path. Fortu-
nately, as we will show in this paper this is not the case.
Indeed, in a wide variety of scenarios the bandwidth
overhead due to congestion notifications is only a few
percent (typically less than 2%). Furthermore, recent
measurements have shown that most of the links in a
datacenter are not congested [12]: edge links are rarely
congested, and no more than 25% of the core links are
”highly” utilized at any point in time.

To instantiate our scheme, we need to address two key
challenges. First, we must determine what information
to include in the congestion signal. This information
should be (i) small enough to minimize resource usage,
(ii) descriptive enough to provide the sender sufficient
information, and (iii) simple enough so switches can
generate signals quickly. Second, to succeed where prior
proposals have failed (i.e., ICMP Source Quench), we
must also ensure that congestion signals do not consume
too many resources under any circumstances.

Addressing these challenges leads to a solution with
many important benefits. First, traditional acknowledge-
ments are no longer needed to indicate congestion. As
such, we can reduce their rate significantly, as they are

1

now only used to implement flow control. This reduc-
tion is so large that it often leads to an overall drop in
network load, offsetting the signaling overhead. Second,
improving congestion response times allows us to safely
start with a larger initial window, dramatically reduc-
ing the completion time of latency-critical short flows.
Finally, congestion signals allow transport protocols to
differentiate between out-of-order delivery and packet
loss, which improves their ability to leverage multiple
paths.

In this paper, we introduce FastLane, a lightweight,
transport-agnostic congestion signaling mechanism that
realizes these benefits. In doing so, we make the following
contributions:

1. We present the design and implementation of Fast-
Lane. To underline the benefits of our proposal, we
demonstrate how TCP can be extended to take
advantage of it.

2. We evaluate our proposal in a number of scenarios
using testbed experiments and simulations. Results
from our evaluation indicate that FastLane can
achieve over 80% reduction in 99.9th%-ile flow com-
pletion time.

3. We analyze the overhead of FastLane and show
that the worst case bound is small. Further, we ex-
perimentally show that the improvements achieved
by FastLane remain even when we cap the band-
width and buffers used by congestion signals to 2%
and 5%, respectively.

The remainder of this paper is structured as follows.
In the following section, we demonstrate the need for a
congestion signaling mechanism, describing how it would
allow transport protocols to improve their performance.
In Section 3, we describe the mechanisms employed
by FastLane. The details of our implementation are
described in Section 4. We evaluate FastLane and report
both implementation and simulation results in Section
5. We discuss the generality of FastLane in Section 6.
We contrast our approach with prior work in Section 7
and conclude in Section 8.

2. THE NEED FOR A CONGESTION
SIGNAL

In this section, we begin by describing the high-percentile
performance requirements imposed by datacenter ap-
plications. Recent transport protocols have proposed
increasingly complex actions to meet these requirements.
We analyze how obtaining congestion signals from the
network would help them be more effective. In the con-
text of these actions, we describe the value of obtaining
congestion signals in a timely manner and the mech-
anisms necessary to do so. We conclude by discussing

what information the signal should provide. This deci-
sion has far-reaching consequences. Different approaches
have different restrictions on how frequently the sender
can be informed and provide transport varying amounts
of information.

2.1 Performance Requirements
Datacenter networks are expected to meet strict per-

formance requirements. Hundreds of intra-datacenter
flows may be required to construct a single web-page [24].
The worst-case performance is critically important as
workflows (i.e., partition-aggregate) can only complete
when the last flow has arrived.

To make matters worse, these flows are typically small.
Measurements from Microsoft’s production datacenters
indicate that latency-sensitive flows typically range from
2-20 KB in length [7]. As discussed in DeTail [30], such
small flows pose extra challenges for traditional transport
protocols as they do not have sufficient information (i.e.,
duplicate acknowledgements) to recover quickly from
packet loss.

2.2 The Utility of Additional Information
To address these problems, recent efforts have pro-

posed giving protocols the following capabilities:

• Reducing background flow transmission rates to
prevent them from utilizing precious switch buffers
(DCTCP, HULL, D2TCP) [7,8, 27].

• Moving traffic away from congested links to those
that are free (MPTCP, Hedera) [6, 26].

• Quenching a small number of flows so others can
complete on time (D3, PDQ) [20,28].

All of these would benefit from receiving congestion
signals from the network. Background flow transmission
rates could be dropped and raised much more quickly
in response to congestion events. This would further
decrease the timeouts experienced by short, latency-
sensitive flows when they are present while allowing
background flows to consume more bandwidth when
absent. Similarly these signals would allow traffic to
be moved more quickly from congested links to lightly
utilized ones. Finally they could make flow quenching
operations simpler and more effective by letting trans-
ports know where congestion is being experienced and
what flows are being affected.

2.3 The Value of Timely Delivery
The transport actions described would improve if the

congestion signal arrived sooner. As shown in Figure 1,
congestion signals are traditionally forwarded to the
receiver before being echoed back to the sender. This is
true for both indirect signals as well as direct ones (i.e.,
ECN). They incur many unnecessary network delays

2

Data

Congestion Signal

Ack

ECN Marked Data, Ack

Source Destination

Figure 1: Different ways of signaling, with each incur-
ring varying delays for the source to detect congestion.
The fastest possible way is for the switch to signal the
source directly.

(e.g. queueing, transmission, processing) along the path
to the receiver as well as processing delays at the receiver
itself. Signals then travel the extended path back to the
sender. Not only are these delays large, but they are also
highly variable.

In Figure 1, we see that FastLane significantly reduces
delays by having switches send signals directly to the
sources. To minimize queueing delays, signals also receive
the highest priority. As a result, they arrive at senders
as quickly as possible.

2.4 Congestion Signal Alternatives
Now that we have described the value of providing

low-latency congestion signals to the transport layer, we
discuss what information they should contain. Based
on the relative strengths and weaknesses of various op-
tions, it becomes apparent which approach leads to
high-percentile latency improvements.

2.4.1 Periodic Congestion Summaries
Switches already collect congestion statistics via SNMP

counters. These could be used to send periodic conges-
tion summaries to end-hosts.

This approach would be of limited use for achieving
high-percentile performance for latency-sensitive flows.
The workflows (i.e., partition-aggregate) commonly used
in production datacenters can cause flash congestion
[7, 30]. This approach is unlikely to inform sources in
a timely manner. Additionally, it requires one of two
unfavorable options: (i) switches can either maintain
flow state to know to which sources to send notifications,
or (ii) they can broadcast this information to all the
end-hosts in the datacenter.

2.4.2 Rate Reduction Notifications
As previously proposed by ICMP Source Quench [17],

switches can transmit rate reduction notifications. Since
these messages are sent in response to arriving pack-
ets, they have the advantage of not requiring switches
to maintain flow state. But these notifications do not
provide sufficient information for senders to make more
informed decisions.

Ambiguity arises because senders do not know which,
if any, of a flow’s packets have been dropped. This pre-
cludes transports from taking early actions such as re-
transmitting dropped packets on another path. Instead,
transports obtaining rate reduction notifications must
continue to rely on traditional, indirect indicators, to
make these decisions.

2.4.3 Dropped Packet Notifications
It would be best for switches to transmit dropped

packet notifications to senders for every packet loss.
Senders could then make any of the decisions discussed
earlier. They could decide how much to reduce the rate
of the transmission by based on the priority/deadline
of the flow. If the flow cannot meet its deadline, the
sender could abandon it in hopes that it will help others
complete on time. Finally, a sender could determine that
a certain path is experiencing far too much congestion
and retransmit the packet on another one. Congestion
signals do not mandate any of these specific actions.
These decisions can by made by senders, depending
on the transport protocol used and the workload it is
optimized for.

However, dropped packet notifications face the follow-
ing challenges:

• The signal should be delivered to the sender with
high-probability and low-latency so that transport
can react rapidly.

• The mechanism needs be low-overhead, both in
terms of signal generation and the load placed on
the network.

• Finally, the information conveyed should require
only simple processing by the sender. The network
stack should be able to digest and process this
information quickly to enable fast turnarounds.

In the next section, we describe the design of our
solution, FastLane, and show how it achieves each of
these goals.

3. FASTLANE
In the previous section, we discussed why drop no-

tifications would help transport protocols reduce high-
percentile flow completion times. Here we begin by pro-
viding an overview of the congestion notifications pro-
vided by FastLane and the transport response.

Later, we describe how we address the key challenges
with FastLane. We present an approach that ensures

3

Src Dst ToS
(0x00)

PayloadTransport
Header

Dst Src ToS
(0x04)

Transport
Header

Figure 2: The notification is created by a simple trans-
formation of the to-be dropped packet: flip source and
destination, set a TOS bit and truncate at the transport
header.

control notifications do not consume too many resources.
We then show how the switch can perform simple opera-
tions to transmit these packets at line rate. We conclude
by describing how transports can take advantage of
FastLane by supporting multiple paths and reducing
the number of acknowledgments.

3.1 Overview
When multiple sources share a path, the queues of

a switch on it may start to fill. Initially, the switch
has sufficient resources to buffer arriving packets. But,
eventually, it runs out of buffers. At this point, the switch
must start dropping packets (either arriving ones or ones
already enqueued). This is where FastLane kicks in. For
every dropped packet, it sends a notification back to the
source, informing it which packet was lost.

A key design point with FastLane is the contents of
this notification. One option would be to simply include
the source and destination ports at the beginning of the
transport header. This would informed the source as to
which flow was contributing to congestion. However, it
would not informed the source as to which packet had
actually been dropped. As described later in this section,
sources need to know the specific packet dropped to
provide multipath support and to reduce the number
of acknowledgements. So we opted to include the entire
transport header as depicted in Figure 2.

Transports must also be able to differentiate notifica-
tions form other packets. One approach would be to set
a flag in the transport header. But this would required
the switch to have transport-specific knowledge. Instead,
FastLane sets a TOS bit in the IP header (in a man-
ner similar to ECN) that is then used by the source to
identify notifications.

Finally, transports must know the length of the packet
that was dropped to be able to reconstruct it. There are
two approaches to addressing this problem: (i) the total
length in the notification’s IP header can be set to that
of the dropped packet or (ii) transports can add a new
header option to every packet that contains this value.
In either case, the value would be echoed back in the
notification.

Once the source receives and identifies the notifica-

Algorithm 1 End-host response

1: w ← 0 . End of window
2: r ← false . In recovery
3: i← 0 . Window inflation
4: function OnRxNotify(c)
5: d← totlen(c)− (len(iphdr) + len(tcphdr))
6: if d > 0 then
7: senddata(seqno(c), d) . Resend data
8: if r = false then . Reduce window
9: r ← true

10: h← highestsent
11: cwnd← cwnd/2
12: ssthresh← cwnd
13: end if
14: else
15: if ackno(c) ≥ lastacktx then
16: sendempty(flags(c)) . Send non-data
17: end if
18: end if
19: end function
20: function OnAckRx(a)
21: if r = true && ackno(a) ≥ w then
22: r ← false
23: end if
24: if newack(a) then
25: i← outoforder(a)
26: else
27: i← max(outoforder(a), i)
28: end if
29: end function

tion, it must respond appropriately, throttling its rate
and retransmitting the packet. The details of source
reaction are transport-specific, with different transports
responding differently. We provide an example of how a
TCP NewReno source would react in Algorithm 1. TCP
first checks to see whether the notification is for a data
packet. As shown in Line 5, this is simply performed by
subtracting the TCP and IP header lengths from the
total length (stored in the IP header in this example) to
get the data length. If the data length is greater than
zero, the dropped packet contained data.

For data packets, we can use the sequence number
(in the TCP header) and the data length to reconstruct
the packet (Line 7). The reconstructed packet is then
transmitted. Since a lost data packet is likely an indicator
of congestion, we also check to see if the congestion
window should be cut in half (as is traditionally done).
As shown in Line 8, we cut the window in half for the
first congestion notification received within the window.
This ensures that the window is not cut in half many
times for a single congestion event.

The notification may have not been for a data packet.
Other packets have two distinct properties that require

4

special consideration. They may contain flags (e.g., SYN
or FIN) and the cumulative nature of acknowledgments
means they may not have to be retransmitted. Line 15
shows how we address these issues. We first check to see
if we have already transmitted a packet acknowledging
a higher sequence number. If so, we do not send another
packet. Otherwise, we reconstruct the packet, copying
the flags from the congestion notification.

3.2 Controlling Resource Consumption
A common concern when sending notifications in re-

sponse to congestion is that the notifications and/or
response to them not exacerbate the congestion. We first
provide some intuition about the worst-case overhead
incurred when sending notifications. Then we describe
how it can be effectively reduced. We conclude by provid-
ing example modifications to TCP intended to prevent
senders from responding too aggressively.

To obtain some intuition about the notification over-
head, lets begin by assuming the packets in a datacenter
are dropped according to a probability of p, (irrespective
of size). Then the overhead can be approximated by the
following equation:

ndata + nack
data+ ack + ndata + nack

(1)

Where data and ack are the loads due to data and
acknowledgments, respectively. ndata and nack are the
loads due to the notifications sent in response to data
and acknowledgment drops, respectively. Assuming a
data packet size of 1400 B and an acknowledgment size
of 64 B, this equation becomes:

64p+ 64(1− p)p
1400 + 64(1− p) + 64p+ 64(1− p)p

(2)

Which simplifies to:

64p(2− p)
1464 + 64(1− p)p

(3)

Figure 3 depicts the overhead, plotted as a function
of p. We see that at the maximal drop rate of 100%, the
overhead due to notifications is under 4.5%. The maximal
value depends heavily on the size of data packets. As
described in a recent measurement study, packet sizes
in datacenters are typically bimodal, with data packets
clustering around 1400 B [12], providing the expectation
of low overhead.

This equation suggests that notifications will not sig-
nificantly contribute to congestion, especially given that
they are transmitted in the direction away from the con-
gested link. To ensure that edge cases do not arise, we
also propose adding a strict 2% cap on the bandwidth
that notifications may use. We chose this value based
on a sensitivity analysis performed in Section 5.

��

�����

�����

�����

�����

�����

�� ���� ���� ���� ���� ��

�
��
��
��
�

�������������������

Figure 3: Theoretical overhead of FastLane as a func-
tion of drop probability. The worst-case is 4.5%, but our
cap restricts it to 2%.

We expect that in normal network operation, this cap
will never be reached. A 2% cap implies that over 25%
of packets are being dropped. If the network approaches
such a congested state, performance will be so degraded
that it is likely best to drop notifications and have the
sources timeout.

One of the ways to prevent reaching this cap is to
ensure the transport protocol does not respond too ag-
gressively to notifications. Choosing the aggressiveness
of the response represents a tradeoff. On the one hand,
transport protocols should be sufficiently aggressive as
to use available resources. This is especially true in mul-
tipath environments where many paths may exist for
packets to take. On the other hand, transport protocols
should not be so aggressive as to push the network into
an unstable state.

Our modifications to TCP strike a balance between
these two extremes. We retransmit packets for which
notifications have been received instantaneously. But, we
do not send any �new packets until the complete window
has been acknowledged. This represents an appropriate
tradeoff as the availability of explicit drop notifications
means that we do not have to keep sending �new data to
prevent a timeout.

3.3 Efficient Notification Transmission
To ensure that we can send notifications for every

drop, a key requirement is for switches to be able to
send them at line rate. To achieve this goal, we rely on
well-specified packet-manipulation operations that can
be performed in the data plane.

As the packet must be sent back to the source, we need
to swap the source and destination IP addresses. It may
also seem that transforming the packet requires modi-
fying the transport headers (i.e., swapping the source
and destination ports), but this is actually unnecessary.
By leaving this operation to the end-host, FastLane re-
mains transport-agnostic. However, as mentioned earlier,
we must also set a flag in the IP header, indicating that
the packet is a notification.

5

As these operations are light-weight, switches should
have no problem performing them at line-rate. While
they do require recomputing the IP checksum, it must
already be updated as the TTL field is typically decre-
mented at each hop. These operations may violate the
transport-layer checksum (if it uses a pseudo-header
as TCP does). Requiring the switch to recalculate the
checksum is onerous, so we opted to have end-hosts ig-
nore it for notifications. We argue that this decision is
safe as corrupted packets are still likely to be detected
by link-layer checksums. In the low probability condition
where the corruption goes undetected, a packet may be
unnecessarily retransmitted.

Once we have transformed the packet, we must decide
on which port to transmit the notification. As forwarding
lookups are one of the most time-consuming operations
in processing a packet, we opted to have the switch
forward the packet to the port on which it arrived.

3.4 TCP Optimization: Supporting Multiple
Paths

As mentioned earlier, one of the advantages of Fast-

Lane is that it allows transports to differentiate between
out-of-order delivery and losses. Here we show the addi-
tional steps required for TCP to leverage the multiple
paths commonly available in datacenters.

The cumulative nature of acknowledgments makes it
challenging to extend TCP to effectively use multiple
paths. Cumulative acknowledgments do not specify the
number of packets that have arrived out of order. This
number is likely to be high in multipath environments
(unless switches restrict themselves to flow hashing).
Packets received out of order have left the system and
are no longer contributing to congestion. Thus this infor-
mation would allow TCP to safely inflate its congestion
window and hence achieve faster completion times.

To address this problem, we introduce a new TCP
option that contains the number of out-of-order bytes
received past the cumulative acknowledgment. When
a source receives an acknowledgment containing this
option, it accordingly inflates the congestion window.
This allows more packets to be transmitted and reduces
dependence on the slowest path (i.e., the one whose data
packet was received late).

A question here is how much should the congestion
window be increased by. As shown in Line 24 of Algo-
rithm 1, the answer depends on the type of acknowl-
edgement. If the acknowledgement is a new one (i.e.,
it cumulatively acknowledges new segments), then the
window should be inflated by number of out-of-order
bytes stored in the TCP option. If the acknowledgment
is a duplicate, then the window should be inflated by the
maximum of the new out-of-order value and the current
inflation value. This ensures correct operation even when
acknowledgments themselves are received out-of-order.

����

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� �
�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��
��
�
��

��
��

��
��
��

��
��

��
�
��
��
��
�
��

��
��

��
��
��

��
��

��������

����
�����

Figure 4: Performance of FastLane when the ACK is
generated at the receipt of different fractions of the
window. We see that it is possible to reduce ACKs to
only once every 1/3rd of a window without significantly
impacting the throughput.

As mentioned earlier, a concern with more aggressively
using available resources is that the transport protocol
may overdrive the network. We balance these compet-
ing desires by not inflating the window whenever the
connection is in slow start.

3.5 TCP Optimization: Reducing Acknowledg-
ments

While cumulative acknowledgments pose the limita-
tion described earlier, they are also beneficial. They
allow us to reduce the number of of acknowledgements
simply by sending fewer of them. Because of FastLane,
acknowledgements are now only used to move or grow
the congestion window. As they are not used to respond
to congestion, we can reduce the number of them without
increasing congestion response-times.

Sending fewer acknowledgements does have potential
downsides. If notifications are dropped and the sender
times out, packets may be retransmitted unnecessarily.
Also, forward and reverse path asymmetries may lead
to drops in throughput. In scenarios where notification
drops are exceedingly rare and these throughput drops
are insignificant, sending fewer acknowledgements may
be an appropriate tradeoff to make.

To determine the fraction of the window that must
be acknowledged, we setup a simple simulation on a 16-
server FatTree topology with 10Gbps links. We run an
uncontended flow between two servers in different pods,
increasing the fraction of the window that is received
before an acknowledgment is generated. Since we start
with a larger initial window size, we assume that the
window is at least one bandwidth-delay product and our
flows start outside of slow start (as proposed by pFab-
ric [9]). We also keep the congestion window constant
through this simulation to ensure that short flows would
not be harmed by this approach.

6

Figure 4 demonstrates the results for a 1 MB flow.
We see that throughput drops off when the fraction of
the window is larger than 1/3. To ensure the generality
of our approach, we also repeated this simulation with
the 16-server FatTree having 1Gbps links and a much
larger bandwidth-delay product. As shown in the figure,
we obtained similar results.

The value of 1/3 may come as a surprise. It is primarily
because acknowledgments are smaller than data packets
and hence require reduced transmission delays. Thus the
reverse path takes less time.

For all of the experiments in Section 5, when us-
ing FastLane, TCP will only send an acknowledgement
when 1/3 of the window has been received. Note that the
packets received do not have to be in-order. To enable
this functionality, the destination must know when it
has received 1/3 of the sender’s window. We address this
problem by introducing a new TCP option that informs
the destination how many packets it should receive be-
fore sending an acknowledgment. When calculating this
value, we also compare it to the size of source’s transmit
buffer and take the minimum of the two. Towards the
end of a flow, a source may have fewer than 1/3 of a
window of data remaining. We want to appropriately
handle this case to ensure that we do not wait needlessly
for a delayed acknowledgment.

4. IMPLEMENTATION
Having described the congestion notification mecha-

nism provided by FastLane and addressed its challenges,
we now discuss the details of our implementation.

We implemented all of our proposed changes for TCP
to take advantage of FastLane in Linux kernel version
3.2. To allow the end-host to process and respond to no-
tifications, we modified the operating system’s TCP/IP
stack. The receiving hook at layer 4 (tcp_v4_do_recv())
uses a TOS bit to identify a notification and processes
it in a separate routine.

The processing begins with retrieving the socket con-
text corresponding to the received notification. We use
the processing described in Section 3 to determine the
type of packet that has been dropped. For data packets,
we walk through the write_queue for the socket until
we find the corresponding packet. For other packets, we
simply copy over the flags from the notification and re-
transmit based on TCP’s socket context. In either case,
we call the routine tcp_transmit_skb() to send the
packet. We deliberately avoid using the retransmission
routine in the kernel (tcp_retransmit_skb()) so as to
avoid book-keeping these retransmissions.

As discussed earlier, we use two 4-byte options in the
TCP header to help inflate the congestion window at
the sender and reduce the number of acknowledgments
generated by the receiver. The first option informs the
sender of the number of out-of-order bytes received, and

is computed at the receiver when sending an acknowl-
edgment. Fortunately, the kernel stores the out-of-order
packets for a flow in an out-of-order queue in the TCP
socket. To compute the number of out-of-order bytes, we
iterate over this queue, adding the bytes in each packet
buffered. The second option is used by the sender to
inform the receiver when to send an ACK. To calculate
this option, we require the state of the sender’s current
transmission window. All packets carry these options,
except those for the initial connection establishment.
Adding options required modifying the expected TCP
header length, which is set in different places for the
sender and the receiver. The receiver sets the header
length it expects once it receives a SYN and forks a
new socket; the sender sets it upon the receipt of the
SYN-ACK.

Finally, we modified a number of default values in
the kernel (e.g., the initial timeout value, maximum and
minimum delayed ack timer values, etc). Our modifi-
cations, except the changes to the defaults are easily
disabled using a TCP socket-level option. The defaults
are maintained for standard TCP processing to ensure
fairness.

5. EVALUATION
We now present the evaluation of FastLane. Our goal

is to show the performance of our proposal in a wide
variety of settings that encompass the common traffic
characteristics present in today’s datacenters. In doing
so, we strive to capture the efficacy of FastLane in
meeting the goals described in Section 2.

We report on our experiments from a 16-server Fat-
Tree topology running on Emulab [4]. We use Click to
provide the switch functionality [23]. To achieve a re-
alistic oversubscription factor of 4 while maintaining
multiple paths, we rate limit the links to speeds lower
than those commonly observed in datacenters. Links be-
tween the aggregate and core switches run at 250 Mbps
and the links between top-of-rack and aggregate switches
run at 500 Mbps. Servers are connected to top-of-rack
switches by Gigabit links. Given the reduced link speeds,
we appropriately scale buffers to 32KB per port (shared
across all ports). We use these measurements to validate
our NS-3 [5] based simulator. Finally, we present our
results using the validated simulator, for a larger-scale,
128-server FatTree topology. This topology uses 10 Gig
links, maintains an oversubscription factor of 4 and uses
128KB buffers per port (as found in current switches [2]).

Our overall experimental strategy is as follows: we com-
pare long-tail transport performance to that achieved
when the transport protocol is assisted by FastLane. As
FastLane allows the transport protocol to more effec-
tively use multiple paths, we have switches use packet
scatter when FastLane is enabled. We report 99.9th per-
centile flow completion times for frontend/backend and

7

all-to-all communication patterns.
All experiments use request-response workflows. Re-

quests are initiated by a 10 byte packet to a server. We
classify these requests into two categories: high-priority
and low-priority. A high priority request results in a
response that can be a flow of size 2, 4, 8, 16, or 32 KB,
with equal probability. This spans the range of high-
priority flows typically observed in datacenters [7]. A
low priority request generates a 1 MB background flow.
We ensure the continuous presence of background flows
in all the scenarios by engaging every server in one of
these flows on average.

We evaluate how both TCP-Cubic [18] and TCP-
NewReno [15] perform in these environments. TCP-
Cubic is the most-recent, commonly-used transport avail-
able in Linux while TCP-NewReno is well-established,
with a well-tested simulation model. In all cases, high
priority requests are strictly prioritized over low-priority
background ones. As discussed by HULL (an extension
to DCTCP) [7,8], this baseline provides comparable per-
formance to recently proposed latency-optimized trans-
ports.

We use the same workload and topology in the im-
plementation to validate our simulator. Our simulations
then explore a broader set of environments to under-
stand the limits of FastLane, the effects of bandwidth
capping, and the impact of signal latency. The topology
and these scenarios sometimes dictate a different choice
of parameters than supported in the implementation
testbed (discussed later).

In this section, we begin by presenting the implemen-
tation results for a balanced frontend/backend workload
in the presence and absence of a failed link. Section 5.2
validates the simulator by running the same topology
and workload in NS-3 and comparing the results.

We then present our simulation results for larger
topologies in Section 5.3. These explore performance
under an all-to-all communication pattern, as well as
a more extreme 3:1 frontend to backend one. Once we
have evaluated failure-free performance, we return to
the all-to-all communication pattern and explore the
impact of failures. For all of these cases, we report the
overhead incurred by FastLane. We conclude our sim-
ulation by examining FastLane’s sensitivity to various
bandwidth caps and assess the impact of timeliness of
the congestion signal by investigating the effect of delay
on flow completion times.

5.1 Experiments from the Implementation
In our implementation testbed, we classify half the

servers as frontend and half as backend. Frontends gen-
erate requests to randomly chosen backends according
to a Poission distribution. Given the topology, we set
TCP timeouts to 10ms.

To evaluate the performance of short-flows, we run 5

���

��

���

���

���

���

����

����

�� ���� ���� ���� ���� ����� ����� ����� �����

�
��
��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��
�

�������������������

�� �� �� ��� ���

(a) No link failures

���

��

���

���

���

���

����

����

�� ���� ���� ���� ���� �����

�
��
��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��
�

�������������������

�� �� �� ��� ���

(b) Core-to-agg link missing. We show utilizations only up to
900 requests per second since TCP fails to complete beyond this
(FastLane completes successfully for all loads).

Figure 5: FastLane performs well under different loads
and flow sizes, with almost an order of magnitude im-
provement over TCP-Cubic in some cases.

minute long experiments. During each of these experi-
ments, frontends generate requests at one of the following
rates per second—100, 300, 500, 700, 900, 1100, 1300
and 1500. Thus, each 5 minute run results in a total
of (requests-per-sec × 8 × 5 × 60) flows overall.
Since each request results in a random high priority
response from 5 different flow sizes, the total flows per
flow size is (requests-per-sec × 8 × 60). The idea
here is that these request rates result in different overall
utilization levels. In all these experiments, we also run
1MB background flows continuously (i.e., each frontend
requests a 1MB flow back-to-back, each time randomly
selecting a backend server).

Figure 5a shows the results of this experiment. The rel-
ative flow completion time improves for flows in all cases,
except when the rate is 100 requests per second (this
corresponds to a very low utilization by high-priority
traffic [≈ 4%]). We do not believe this is fundamental to
our scheme, but is an artifact of our testbed—the NICs
in our end-hosts are unable to prioritize flows. Thus
background flows end up interfering with the foreground
flows under light utilizations. This is easily rectified in

8

��

��

���

���

���

���

���

���

���

��� ���� ����

�
��

��
���

��
��
��
��
��
��

��
�
��
��

��
��
��
��
���

��
��

�

���������

Figure 6: Long flows also see an improvement with
FastLane. Although not as much as short flows (which is
the focus of FastLane), the average long flow experiences
a flow completion time reduction of 25%.

real switches and newer NICs that can distinguish flow
priorities correctly. We see increasing improvement with
utilization and/or flow size, as we expect. While we do
not show the improvements incurred by the 1MB back-
ground flow, their average flow completion time improves
by approximately 37%; making FastLane improve the
combined flow completion time even at the lowest load
(100 requests per second).

Link failures are common in datacenter environments
[16, 29]. Figure 5b presents the results when a core to
agg link in the first pod is disconnected. Here, we see
much higher benefits—in most cases, the completion
time is cut down by more than half and in certain cases,
we report improvements of almost a magnitude (be-
cause we report percentage reduction, the magnitude
improvements are not immediately obvious from the fig-
ure. Hence we also report the ratio of completion times
in Table 1 as a reference). Since TCP flows fail to com-
plete at high utilizations due to extreme timeouts, we
show only up to a rate of 900 requests per second. Due
to the extreme amount of congestion in this experiment,
the improvement in average flow completion time for
the background flows is not as much as in the earlier
case—but still they see a modest improvement of 26%.

Initially, it may seem like packet scattering used by
FastLane is the main reason for these improvements in
the presence of persistent hotspots. However, previous
work shows that packet scatter performs poorly in the
presence of failure [26]. Thus, rapid notifications are crit-
ical for improvement in these scenarios— notifications
allow FastLane to prevent timeouts and quickly retrans-
mit dropped packets even under the highest utilizations.

Datacenter protocols must also consider large flows.
To evaluate how FastLane performs in the presence of
longer flows, we run an experiment. In this experiment,
frontends generate back-to-back requests for one of the
following three background flows with equal probability:
1MB, 16MB or 64MB. To account for foreground flows,

���

��

���

���

���

���

����

����

�� ���� ���� ���� ���� ����� ����� ����� �����

�
��
��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��
�

�������������������

�� �� �� ��� ���

Figure 7: Simulation results for the same setting as
those for Figure 5a. The mismatch at low utilization
is due to caveats with the simulation environment (see
Section 5.2)

each frontend also generates foreground requests at a
rate of 100 requests per second. Figure 6 presents the
reduction in average flow completion times compared
to TCP. We notice improvements here too, although
not as high with short-flows. This is obvious, since long
flows present a better setting for TCP compared to short
flows.

5.2 Simulator Validation
We compare our implementation and simulation using

the same settings as in 5.1. Figure 7 depicts the results
and should be compared to Figure 5a.

We see a good match between simulation and imple-
mentation at medium to high utilization levels. At low
utilization, the results do not match as well. The reason
is explained by our inaccurate model of end-host behav-
ior. At low utilization, the end-host dominates. That is,
notifications take time to process; this is not captured
in the simulation.

5.3 Experiments from the Simulator
Having validated the simulation environment, we now

turn our attention to simulation results.
Since it is possible to control the environment much

more finely, our simulations assume that high-priority
requests are more bursty. They are generated according
to a log-normal distribution with σ = 2. Given the use
of higher-speed links, we set transport timeouts to 1ms.
Unless stated otherwise, the network bandwidth and
buffer size used by FastLane is capped to 2% and 5%
respectively.

Since our simulation environment gives us the flexibil-
ity to test larger topologies, we present the results for a
larger number of scenarios:

5.3.1 Normal behavior
We first evaluate how FastLane performs when the

9

req/s min mean max

100 0.89 0.94 1.03

300 1.14 1.19 1.30

500 1.39 1.90 3.73

700 1.64 2.21 3.91

900 2.00 3.55 5.11

1100 3.85 4.95 5.74

1300 3.69 4.86 5.58

1500 4.23 4.97 5.61

no link failure

req/s min mean max

100 0.96 1.03 1.13

300 1.31 1.87 3.85

500 1.70 3.90 5.14

700 3.27 4.70 5.71

900 6.21 7.89 9.86

1100 - - -

1300 - - -

1500 - - -

core-agg link missing

(a) by rate

size min mean max

2k 0.89 2.94 5.53

4k 0.92 3.01 5.74

8k 0.94 3.23 5.13

16k 0.94 2.96 4.67

32k 1.03 3.21 4.23

no link failure

size min mean max

2k 0.96 3.17 6.21

4k 1.00 4.58 9.86

8k 1.03 4.35 9.30

16k 1.00 3.72 7.79

32k 1.13 3.57 6.26

core-agg link missing

(b) by flow size

Table 1: Relative performance of FastLane over TCP-Cubic at indicated request rates and flow sizes. The numbers
indicate the ratio of 99.9th%-ile completion time for TCP to that for FastLane. We see approximately an order of
magnitude improvement in link failure cases.

��

���

���

���

���

����

�� �� ��

�
��

��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��

�

���������������

�� �� �� ��� ���

Figure 8: All-to-all scenario where every server gener-
ates random request to every other server in a 128-server
FatTree topology.

network operates smoothly, without hotspots due to link
failures. We evaluate two settings:

All-to-all. In this experiment, we make every server
randomly query every other server with equal probability.
Hence, all 128 servers are engaged in requests.

The results are shown in Figure 8. As we expect, Fast-
Lane provides greater improvement at higher utilizations,
achieving up to 80% reduction in flow completion time.
Flow size does not significantly impact the improvements
attained.

Frontend-Backend. In this experiment, we evaluate
how FastLane performs when all the traffic is sent to or
received from one pod in a FatTree, creating a hotspot.
For this, we classify 75% of the servers (96) as frontend
and the rest (32) as backend. Due to the high concen-
tration of traffic at the backend, we reduce the average
utilization. Fig 9 depicts the results.

Note that the utilization in this figure indicates the
average core utilization. The utilization on the core links
connected to backend servers is two times higher than

��

���

���

���

���

����

�� �� ��

�
��

��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��

�

���������������

�� �� �� ��� ���

Figure 9: Frontend-Backend scenario where 75% of
the servers act as frontends to the rest (backends). The
utilization is the average core utilization, the backends
experience twice the indicated load.

the average. FastLane performs well in this case too,
achieving significant benefits for all utilizations.

5.3.2 Performance in the presence of failures
As mentioned earlier, link failures are common in

datacenters [26,29]. To evaluate how FastLane performs
in their presence, we repeat the all-to-all experiment
described above, but induce a core-to-agg link failure.
The removed link causes a hot-spot around it with heavy
congestion.

Fig 10 shows the results of this experiment. We no-
tice significant improvement compared to TCP even
at low utilizations—for instance, at 30% utilization,
TCP’s 99.9th percentile completion time for the 2k flow
is 1.02ms compared to FastLane’s 0.17ms. The improve-
ments at higher utilizations are in the range 30-100X.
This is because TCP experiences extreme timeouts due
to congestion and is unable to recover. FastLane, on
the other hand is able to continue because of its ability
to quickly identify and react to drops. In these scenar-
ios, quick detection and reaction are essential to avoid

10

��

���

���

���

���

����

����

�� �� ��

�
��

��
���

��
��
��
��
��

���
�

��
�
��
��

��
��
��
��
���

��
��

�

���������������

�� �� �� ��� ���

Figure 10: All-to-all scenario with a missing core-to-
agg link. The ability of FastLane to quickly detect drops
is reflected in its performance.

congestion collapse.

5.3.3 Overhead Analysis
An important question that still remains unanswered

is the overhead for these improvements. Recall that in
Section 3, we showed that theoretically, the overhead
of control notifications does not go beyond 4.5% (and
above 2% when capped). But how much is it in practice?
We answer this question now.

To show the overhead, we present the number of con-
trol packets generated in each of the simulation exper-
iments discussed earlier in Table 2. Each row in the
table represents the utilization; for TCP we present
the number of ACKs generated during the experiment,
while for FastLane we present the number of ACKs and
notifications separately.

We notice that FastLane generates a fair number of
notifications during the heavy congestion incurred by
link failures. However, FastLane can mask this load by
using intelligence at the transport layer. Specifically,
FastLane is able to reduce the number of ACKs signifi-
cantly, thus reducing the total number of packets in all
cases.

It is easy to understand why the number of acknowl-
edgments is high at low utilizations. Recall that contin-
uous background flows are present in all experiments.
More of these flows complete when there are fewer fore-
ground flows.

5.3.4 Sensitivity to the Cap
In all of our simulations, we restrict the bandwidth and

buffers allocated to FastLane to 2% and 5%, respectively.
We impose this restriction as a safeguard. An interesting
question is how does FastLane perform under varying
amounts of signaling resource availability.

To answer this, we consider the worst-case scenario.
Intuitively, a congestion signaling mechanism’s demand
for resources is the highest during extreme congestion
periods, such as permanent hot-spots due to link failures.

��

��

��

��

��

���

� � � �

��
��
�
���
��
��
��

��
��

��
��
��
��
�
��

��
��

��

�����������������������������

�� �� �� ��� ���

Figure 11: FastLane’s perforance under varying re-
source caps. A 2% bandwidth cap is sufficient for reason-
able performance even under extreme congestions. For
reference, TCP’s numbers for 2k, 4k, 8k, 16k and 32k
flows are 68, 70, 72, 73 and 76 ms respectively.

Hence, we repeat the failed link experiment presented
in Section 5.3.2. We ran this experiment at the highest
average utilization (70%) four times, each time capping
the network bandwidth available for notifications to one
of 1%, 2%, 4% or 8%. We also appropriately scaled the
buffers allocated. Figure 11 depicts the 99.9th percentile
flow completion time for FastLane in each of these cases.

We see a sharp drop in the flow completion time when
the cap is 2% compared to a 1% cap. We also notice
that capping the bandwidth to values above 2% results
in similar performance. Recall that this is a scenario of
congestion collapse. In comparison, TCP’s 99.9th per-
centile flow completion time is over 70 ms! Even at these
extreme conditions and under stringent resource caps,
FastLane performs well.

5.3.5 Effect of delaying notification
Finally, we return to the need for low-latency delivery

of notifications. Again, we consider the worst-case sce-
nario by repeating the all to all experiment with a core-
to-agg link missing. We run this experiment multiple
times. For each, notifications incur a different artificially
injected delay at the switch generating them. The results
are shown in Figure 12.

In the figure, the X-axis is the delay injected at the
switch before sending out the notification. Here we no-
tice that slight delays incur no penalty. But delays 500µs
and greater result in a sharp degradation of performance.
Delays greater than 500µs are likely to occur when using
traditional signaling mechanisms (i.e., ECN). Marked
packets may wait up to 1 ms in every congested queue
(recall that switches have shared-memory queues that
can grow to be quite large). Once delivered to the re-
ceiver, the signal must be echoed back. The process of
echoing the signal will also take a significant amount of
time due to operating system processing delays. This

11

All-to-All All-to-All w/ Missing Link Frontend-Backend

TCP ACKs FastLane ACKs FastLane Notifications TCP ACKs FastLane ACKs FastLane Notifications TCP ACKs FastLane ACKs FastLane Notifications

Low 2285466 766968 79 1895906 747672 27136 5680823 1323168 3251

Medium 1803619 706438 384 1675683 754914 95870 3286658 919166 7529

High 1675764 713635 10436 1686677 932640 519416 1858443 733847 195271

Table 2: Total control packets generated during simulation experiments. Although notifications increase load for
FastLane, it is able to mask this load by significantly reducing ACKs; hence resulting in an overall reduction in total
packets. Thus, FastLane’s improvements do not have to come at the cost of increased overheads.

��

��

���

���

���

���

� �� ��� ��� ����

��
��
�
���
��
��
��

��
��

��
��
��
��
�
��
��
��

��

����������

�� �� �� ��� ���

Figure 12: FastLane’s performance under varying de-
lays for sending notification. These results substantiate
the need for the low-latency delivery of congestion noti-
fication signals.

validates our decision to have notifications sent directly
back to the source with the highest priority possible.

6. DISCUSSION
In this paper, we focused on integrating FastLane

into TCP. Many other protocols can exploit FastLane.
Traditionally, transport protocols are not directly no-
tified as to which packets have been dropped. Instead
they must make educated guesses, based on timeouts
and out-of-order packet arrival. An explicit drop noti-
fication sent by the switch directly to the source is far
more precise and timely, greatly reducing completion
times.

MPTCP [26] can be trivially extended to use this ad-
ditional information. In response to a drop notification,
MPTCP either places corresponding packets on other
subflows or retransmits them on the original one as nec-
essary. Even if MPTCP decides to retransmit packets on
the original subflow, it will have received the notification
and hence performed the retransmission sooner than
would have been otherwise possible.

These extensions to MPTCP are likely to yield sig-
nificant performance benefits, especially for short flows.
MPTCP typically uses 4-8 subflows with an initial win-
dow size of 10 packets each. As a result, the first 40 -
80 packets (60 -120KB) of any flow are likely to take
pre-determined paths, calculated by flow hashing. These

packets will only be re-injected into other subflows if
the receive window is not sufficiently large. Providing
MPTCP precise drop notifications may allow it to over-
come this limitation.

Other recent proposals also benefit. pFabric [9] per-
forms well in the absence of failures. But pFabric’s de-
cision to forego retransmission on three duplicate ac-
knowledgments means that it can perform poorly when
link failures cause a permanent hotspot. A few packets
from a window can traverse through a hot-spot and be
dropped. A timeout occurs and the sender may unneces-
sarily retransmit large portions of its window. On the
other hand, FastLane informs pFabric specifically which
packets were dropped, avoiding this problem. This is
particularly helpful when there are many concurrent
flows with the same priority.

7. RELATED WORK
Here we first describe how FastLane compares with

prior work in datacenter networks. Later we touch upon
other areas, namely Internet Protocols and Wireless
Networks, discussing each in turn.

7.1 Datacenter Networks
Researchers have proposed an extensive set of trans-

port modifications for datacenter networks. They largely
fall into two groups: (i) those using end-host solutions
that avoid/minimize modifications to network elements
and (ii) those requiring extensive protocol-specific changes
to support explicit resource reservations. DCTCP, HULL,
and D2TCP fall into the first category [7, 8, 27] while
D3 and PDQ fall into the second [20,28]. FastLane fo-
cuses on improving congestion response times, thereby
allowing host-based mechanisms to be more effective.
Its transport-agnostic nature increases the chance for
adoption.

Industry has adopted standardized Ethernet link-layer
improvements, such as Quantized Congestion Notifica-
tions (802.1Qau [1]). Switches directly notify end-hosts
about which flows are contributing to congestion. The
decisions to use congestion notifications instead of drop
notifications and to rate limit at the NIC forego many
of the advantages of FastLane. Hardware resources are
limited, so a set of unrelated flows may share a rate-

12

limiter. As a result, flows not contributing to congestion
may be slowed down. The decision to avoid informing
transport prevent many of the optimizations described
in this paper.

[30] proposes to orchestrate the datacenter bridging
protocols [3] into a stack, DeTail. While achieving high
levels of performance, DeTail depends on end-hosts to
respond to congestion notifications in a timely manner.
If they do not, the network may experience head-of-
line blocking, significantly degrading performance. Also,
DeTail requires relatively larger per-port buffers to guar-
antee that packets are not dropped. Back-of-the-envelope
calculations suggest that these requirements are higher
than the buffers currently available for commodity 10
gigabit switches [2].

7.2 Internet Protocols
There is a rich history of transport protocols in the In-

ternet [10,13,15,21]. Given the need to make minimal as-
sumptions about underlying networks, these approaches
primarily focus on learning of packet drops indirectly.
As a result, they resort to making assumptions such as:
the packets of every flow will traverse a single path in
order to improve performance. These assumptions are
inappropriate for datacenter networks where many paths
exist between a source and destination.

There has been effort to directly provide transport
protocols more information, notably the ICMP Source
Quench message [17]. This approach failed primarily be-
cause the condition of the router sending the notification
was poorly defined (i.e., it could send the notification
early, before a packet was dropped). Also this approach
was seen as unfair to TCP because other protocols could
make the choice of ignoring these messages.

These problems have either been addressed by Fast-

Lane or are not a concern in datacenter networks. We
have clearly specified the condition under which switches
send notifications and the single administrative domain
allows datacenter operators to control the types of transport-
layer protocols used.

7.3 Wireless Networks
Improving transport protocols over wireless networks

is a well explored topic in the literature, where the solu-
tions try to provide reasoning for the loss—such as link-
failures (e.g. [19]) or channel-induced losses (e.g. [11])—
explicitly through the use of control packets so that
the sender may react appropriately. Flush [22] and
RCRT [25] use negative acknowledgments (NACK) for
end-to-end loss recovery in the context of multihop wire-
less sensor networks.

However, the focus of these proposals is not optimizing
flow completion times. They merely tried to fix the
incorrect behavior in the transport protocol. In the face
of actual congestion, the protocol behavior remains the

same.

8. CONCLUSION
In this paper, we presented FastLane, an agile conges-

tion signaling mechanism for improving high-percentile
datacenter networking performance. The key motivation
behind our proposal is the fact that the fastest possi-
ble signaling must be done by the congested switch to
the source directly and with high probability. By doing
so, FastLane tries to minimize the delay incurred by
senders in detecting and responding to congestion.

We demonstrated the efficacy of our work by modify-
ing TCP to take advantage of FastLane. The testbed
experiments and simulations show that the rapid sig-
naling mechanism helps achieve significant reduction in
worst-case flow completion times, often over 80% and in
some cases reaching an order of magnitude. We showed
that the benefits do not have to come at a large cost—
FastLane maintains large improvements even when cap-
ping the bandwidth and buffers to 2% and 5%, respec-
tively. Further, we show how transport protocols can
mask these already low overheads to achieve an overall
reduction in the load.

Perhaps the greatest value of FastLane is that all of
these advantages are transport agnostic and can benefit
many protocols. With the increasing interest in improv-
ing worst-case performance in datacenters, we hope our
efforts are well placed.

9. ACKNOWLEDGEMENTS
This research is supported in part by NSF CISE Expe-

ditions award CCF-1139158 and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services,
Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloud-
era, Ericsson, Facebook, General Electric, Hortonworks,
Huawei, Intel, Microsoft, NetApp, Oracle, Quanta, Sam-
sung, Splunk, VMware and Yahoo!.

10. REFERENCES
[1] 802.1qau - congestion notification.

http://www.ieee802.org/1/pages/802.1au.html.
[2] Arista 7050 switches.

http://www.aristanetworks.com/.
[3] Data center bridging.

http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns783/at a glance c45-
460907.pdf.

[4] Emulab. http://www.emulab.net.
[5] Ns3. http://www.nsnam.org/.
[6] Al-fares, M., Radhakrishnan, S., Raghavan,

B., Huang, N., and Vahdat, A. Hedera:
Dynamic flow scheduling for data center networks.
In NSDI (2010).

[7] Alizadeh, M., Greenberg, A., Maltz, D. A.,
Padhye, J., Patel, P., Prabhakar, B.,

13

Sengupta, S., and Sridharan, M. Data center
tcp (dctcp). In SIGCOMM (2010).

[8] Alizadeh, M., Kabbani, A., Edsall, T.,
Prabhakar, B., Vahdat, A., and Yasuda, M.
Less is more: Trading a little bandwidth for
ultra-low latency in the data center. In NSDI
(2012).

[9] Alizadeh, M., Yang, S., Katti, S.,
McKeown, N., Prabhakar, B., and Shenker,
S. Deconstructing datacenter packet transport. In
Proceedings of the 11th ACM Workshop on Hot
Topics in Networks (New York, NY, USA, 2012),
HotNets-XI, ACM, pp. 133–138.

[10] Allman, M., Paxson, V., and Stevens, W.
RFC 2581: TCP congestion control, 1999.

[11] Balakrishnan, H., Seshan, S., Amir, E., and
Katz, R. Improving tcp/ip performance over
wireless networld. In Mobicom (1995).

[12] Benson, T., Akella, A., and Maltz, D. A.
Network traffic characteristics of data centers in
the wild. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement
(New York, NY, USA, 2010), IMC ’10, ACM,
pp. 267–280.

[13] Brakmo, L. S., O’Malley, S. W., and
Peterson, L. L. Tcp vegas: new techniques for
congestion detection and avoidance. In SIGCOMM
(1994).

[14] Floyd, S. Tcp and explicit congestion notification.
ACM SIGCOMM Computer Communication
Review 24, 5 (1994), 8–23.

[15] Floyd, S., and Henderson, T. The newreno
modification to tcp’s fast recovery algorithm, 1999.

[16] Gill, P., Jain, N., and Nagappan, N.
Understanding network failures in data centers:
measurement, analysis, and implications. In
Proceedings of the ACM SIGCOMM 2011
conference (New York, NY, USA, 2011),
SIGCOMM ’11, ACM, pp. 350–361.

[17] Gont, F. Deprecation of icmp source quench
messages, 2012.
http://tools.ietf.org/html/rfc6633.

[18] Ha, S., Rhee, I., and Xu, L. Cubic: a new
tcp-friendly high-speed tcp variant. SIGOPS Oper.
Syst. Rev. 42 (July 2008).

[19] Holland, G., and Vaidya, N. Analysis of tcp
performance over mobile ad hoc networks. In
Mobicom (1999), ACM.

[20] Hong, C.-Y., Caesar, M., and Godfrey,
P. B. Finishing flows quickly with preemptive
scheduling. In ACM SIGCOMM (August 2012).

[21] Jacobson, V., and Braden, R. T. Tcp
extensions for long-delay paths, 1988.

[22] Kim, S., Fonseca, R., Dutta, P., Tavakoli,
A., Culler, D., Levis, P., Shenker, S., and

Stoica, I. Flush: a reliable bulk transport
protocol for multihop wireless networks. In Sensys
(2007), ACM.

[23] Kohler, E., Morris, R., Chen, B., Jannotti,
J., and Kaashoek, M. F. The click modular
router. ACM Trans. Comput. Syst. 18 (August
2000).

[24] Ousterhout, J. K., Agrawal, P., Erickson,
D., Kozyrakis, C., Leverich, J., Mazières,
D., Mitra, S., Narayanan, A., Rosenblum,
M., Rumble, S. M., Stratmann, E., and
Stutsman, R. The case for ramclouds: Scalable
high-performance storage entirely in dram. In
SIGOPS OSR (2009).

[25] Paek, J., and Govindan, R. Rcrt:
rate-controlled reliable transport for wireless sensor
networks. In Sensys (2007), ACM.

[26] Raiciu, C., Barre, S., Pluntke, C.,
Greenhalgh, A., Wischik, D., and Handley,
M. Improving datacenter performance and
robustness with multipath tcp. In SIGCOMM
(2011).

[27] Vamanan, B., Hasan, J., and Vijaykumar, T.
Deadline-aware datacenter tcp (d2tcp). In
Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies,
architectures, and protocols for computer
communication (New York, NY, USA, 2012),
SIGCOMM ’12, ACM, pp. 115–126.

[28] Wilson, C., Ballani, H., Karagiannis, T.,
and Rowtron, A. Better never than late:
meeting deadlines in datacenter networks. In
SIGCOMM (2011).

[29] Wu, X., Turner, D., Chen, C.-C., Maltz,
D. A., Yang, X., Yuan, L., and Zhang, M.
Netpilot: automating datacenter network failure
mitigation. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies,
architectures, and protocols for computer
communication (New York, NY, USA, 2012),
SIGCOMM ’12, ACM, pp. 419–430.

[30] Zats, D., Das, T., Mohan, P., Borthakur,
D., and Katz, R. H. Detail: Reducing the flow
completion time tail in datacenter networks. In
Proceedings of the ACM SIGCOMM 2012
conference (New York, NY, USA, Aug 2012),
SIGCOMM ’12, ACM.

14

	Introduction
	The need for a congestion signal
	Performance Requirements
	The Utility of Additional Information
	The Value of Timely Delivery
	Congestion Signal Alternatives
	Periodic Congestion Summaries
	Rate Reduction Notifications
	Dropped Packet Notifications

	Fastlane
	Overview
	Controlling Resource Consumption
	Efficient Notification Transmission
	TCP Optimization: Supporting Multiple Paths
	TCP Optimization: Reducing Acknowledgments

	Implementation
	Evaluation
	Experiments from the Implementation
	Simulator Validation
	Experiments from the Simulator
	Normal behavior
	Performance in the presence of failures
	Overhead Analysis
	Sensitivity to the Cap
	Effect of delaying notification

	Discussion
	Related Work
	Datacenter Networks
	Internet Protocols
	Wireless Networks

	Conclusion
	Acknowledgements
	References

